Rapid assessment of nonlinear optical propagation effects in dielectrics
نویسندگان
چکیده
Ultrafast laser processing applications need fast approaches to assess the nonlinear propagation of the laser beam in order to predict the optimal range of processing parameters in a wide variety of cases. We develop here a method based on the simple monitoring of the nonlinear beam shaping against numerical prediction. The numerical code solves the nonlinear Schrödinger equation with nonlinear absorption under simplified conditions by employing a state-of-the art computationally efficient approach. By comparing with experimental results we can rapidly estimate the nonlinear refractive index and nonlinear absorption coefficients of the material. The validity of this approach has been tested in a variety of experiments where nonlinearities play a key role, like spatial soliton shaping or fs-laser waveguide writing. The approach provides excellent results for propagated power densities for which free carrier generation effects can be neglected. Above such a threshold, the peculiarities of the nonlinear propagation of elliptical beams enable acquiring an instantaneous picture of the deposition of energy inside the material realistic enough to estimate the effective nonlinear refractive index and nonlinear absorption coefficients that can be used for predicting the spatial distribution of energy deposition inside the material and controlling the beam in the writing process.
منابع مشابه
All-Optical Reconfigurable-Tunable 1×N Power Splitter Using Soliton Breakup
In this paper, we numerically simulated a glass-based all-optical 1×N power splitter with eleven different configurations using soliton breakup in a nonlinear medium. It is shown that in addition to reconfigurability of the proposed splitter, its power splitting ratio is tunable up to some extent values too. Nonlinear semivectorial iterative finite difference beam propagation method (IFD-...
متن کاملشبیهسازی انتشار امواج گاوسی تخت شده در سیستمهای اپتیکی ABCD با روش تبدیل پیرا محوری
In this paper, propagation of flattend Gaussian beam in optical media is simulated by split step fourier method, ABCD matrix method, and paraxial group method, and results are compared. For this purpose, at first, flattend Gaussian beam, strongly nonlocal nonlinear media and investigation methods of propagation of optical beams are introduced. Then, propagation of flattend Gaussian beam in free...
متن کاملTime–frequency control of ultrafast plasma generation in dielectrics
This paper examines ultrafast laser-induced plasma generation in dielectrics by modeling ionization and pulse propagation in glass. Photoionization models for solids predict that the multi-photon ionization rate should increase for near-UV frequencies when compared to those in the visible or near-IR. Conversely, the frequency dependence of a Drude-type absorption by free electrons can produce a...
متن کاملCalculation of Nonlinear Optical Damage from Space-time-tailored Pulses in Dielectrics
Control of the time duration of a laser pulse as it focuses spatially in a material provides a means for delaying the onset of nonlinear e↵ects during propagation. We investigate simultaneous space-time focusing (SSTF) of femtosecond radially-chirped annular pulses in Kerr dielectrics. The energy and temporal chirp of pulses incident upon a grating-grating-lens system are varied in simulations ...
متن کاملOptomechanics of Soft Materials
Some molecules change shape upon receiving photons of certain frequencies, but here we study light-induced deformation in ordinary dielectrics with no special optical effects. All dielectrics deform in response to light of all frequencies. We derive a dimensionless number to estimate when light can induce large deformation. For a structure made of soft dielectrics, with feature size comparable ...
متن کامل